Part Number Hot Search : 
PZ3032 PZ3032 T101K PZ3032 T101K HIN238IB NT6812 LF353D
Product Description
Full Text Search
 

To Download AUIRF1018ES Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  08/19/11 www.irf.com 1 hexfet   power mosfet  AUIRF1018ES v dss 60v r ds(on) typ. 7.1m max. 8.4m i d 79a automotive grade description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. features advanced process technology ultra low on-resistance 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free, rohs compliant automotive qualified * absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress rati ngs only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not impl ied. exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipat ion ratings are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. hexfet ? is a registered trademark of international rectifier. * qualification standards can be found at http://www.irf.com/ s d g gds gate drain source d 2 pak irf1018espbf s d g d symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj i ar avalanche current a e ar repetitive avalanche energy  mj dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 1.32 r ja junction-to-ambient (pcb mount) , d 2 pak  ??? 40 88 47 11 110 c/w 300 21 -55 to + 175 20 0.76 max. 79 56 315

2 www.irf.com    repetitive rating; pulse width limited by max. junction temperature.  limited by t jmax , starting t j = 25c, l = 0.08mh r g = 25 , i as = 47a, v gs =10v. part not recommended for use above this value.  i sd 47a, di/dt 1668a/ s, v dd v (br)dss , t j 175c.  pulse width 400 s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.  r is measured at t j approximately 90c.
 this is only applied to to-220. static electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 60 ??? ??? v / . 0.0 / .1 . .0 .0 110 0. i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 dynamic electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units q g total gate charge ??? 46 69 nc q gs gate-to-source charge ??? 10 ??? q gd gate-to-drain ("miller") charge ??? 12 ??? q sync total gate charge sync. (q g - q gd ) ??? 34 ??? t d(on) turn-on delay time ??? 13 ??? ns t r rise time ??? 35 ??? t d(off) turn-off delay time ??? 55 ??? t f fall time ??? 46 ??? c iss input capacitance ??? 2290 ??? c oss output capacitance ??? 270 ??? c rss reverse transfer capacitance ??? 130 ??? pf c oss eff. (er) effective output capacitance (energy related) ??? 390 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 630 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 79 a (body diode) i sm pulsed source current ??? ??? 315 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 26 39 ns t j = 25c v r = 51v, ??? 31 47 t j = 125c i f = 47a q rr reverse recovery charge ??? 24 36 nc t j = 25c di/dt = 100a/ s  ??? 35 53 t j = 125c i rrm reverse recovery current ??? 1.8 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 50v, i d = 47a i d = 47a r g = 10 10  v dd = 39v i d = 47a, v ds =0v, v gs = 10v t j = 25c, i s = 47a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 47a  v ds = v gs , i d = 100 a v ds = 60v, v gs = 0v v ds = 48v, v gs = 0v, t j = 125c mosfet symbol showing the v ds = 30v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 60v v gs = 0v, v ds = 0v to 60v  conditions i d = 47a v gs = 20v v gs = -20v

www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.8v bottom 4.5v 60 s pulse width tj = 175c 4.5v 2 3 4 5 6 7 8 9 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 47a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 102030405060 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 48v v ds = 30v v ds = 12v i d = 47a

4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc 0 10 20 30 40 50 60 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 e n e r g y ( j ) 25 50 75 100 125 150 175 t c , casetemperature (c) 0 20 40 60 80 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 60 65 70 75 80 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 5ma 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 5.3a 11a bottom 47a

www.irf.com 5 fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ? 0.01 0.00000 0.0 0.00001 0.0 0.000 0.01 0.00 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / / c 4 4 r 4 r 4 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 47a

6 www.irf.com  
 
   fig 16. threshold voltage vs. temperature  
   

 
    
   -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a i d = 100 a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 14 i r r ( a ) i f = 32a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 12 14 i r r ( a ) i f = 47a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 40 80 120 160 200 240 280 320 q r r ( a ) i f = 47a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 40 80 120 160 200 240 280 320 q r r ( a ) i f = 32a v r = 51v t j = 25c t j = 125c

www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform   
 1      0.1 %       
 + -   vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s 20k       ?       ?   ?         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period       + - + + + - - -        ? !"   # $  ?  !   %  &'&& ?     #     (( ? &'&& ) !  '  

   ! !"  fig 21.   
     for hexfet  power mosfets

8 www.irf.com    
 
      
   

 

 
   
         
     !   "#$ %!   &'& (('()() *'*# +!,

www.irf.com 9     !"#$%& ' ( ) 
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.

10 www.irf.com ordering information base part package type standard pack complete part number form quantity AUIRF1018ES d2pak tube 50 AUIRF1018ES tape and reel left 800 AUIRF1018EStrl tape and reel right 800 AUIRF1018EStrr

www.irf.com 11  
 

 
   
  
  

 
 



 
   
 


  
   
  
   
 
 
    

 
 ! 
 
"#$
%  

  & 

'

    
 
      


 #  ( )  

  
  
         
   


 
 
  
   
)      *
 ' 
   
' %   
   +%      '

       
  
    


   

 
    
  
 
    


  *


,

    

 
 ' 
  
    
 
  

    


 
 


  
 
   
   
   
 



 
 
  
 

  

  

 
  
 
 
 
 

      
   
 
 
  (  

 

     

 
          

 %   

  
  
 
 
 
  

 
 
 

        

 
,   
 
 

 
  
 





   




      
 
  
(      -.        
 
, 

.  
 
   
  

 

 




 

  
  
     %        

 
  

     
  
(   

 
 
, 
  
   
 

     /   

 

    0 1

# 01# -0  0  
    01#

  


'
  


     

 .            

 01# 

  2 
 

'



    
  . ) 
      
  
 
     '

  

    


 
 
 




   
    

-/&*-34565'
    
 

 
"#$ .      
   2
  
 
 

 

   
 '
 
   
 
  

  
 
  

    
      
        ! "#


▲Up To Search▲   

 
Price & Availability of AUIRF1018ES

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X